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Abstract. Extensive moleculardpamics computer simulation results are presented for a 
twodimensional (U)) Lennard-Jones system as it is compressed isothermally well beyond 
its normal liquid slate. They show systematic changes in the pair distribution function and 
some of the time correlation functions as the system is transformed Imm a normal liquid 
into an amorphous slate. The density correlation functions, however. slart to exhibit 
a two-step relaxation process, a rapidly decaying component and a slowly denying 
component indicating a StNClUral slowdown, as the system is compressed. The density at 
which the transition lo an amorphous state takes place has been estimated. Our results. 
when compared with those of three-dimensional systems, indicate that while the general 
behaviour is similar, the changes in m take place wer a much smaller range of density. 
Implications of our results for localimtion and the Lindemann criterion are discussed. 

1. Introduction 

In the past decade, considerable research has been carried out on glasses or 
amorphous systems as evidenced in recent review articles [l-31. Molecular-dynamics 
(MD) simulations have been performed using full [4], and truncated 1.51 Lennard-Jones 
potentials and on binary mixtures [6,7]. Neutron scattering experiments have also 
been performed [&9] and much progress has been made, from a theoretical viewpoint, 
in understanding the atomic motions in compressed and supercooled liquids and the 
nature of the liquid-glass transition [IO, 111. 

However very little has been done along these lines on two-dimensional systems, 
even though such systems have been a subject of research for several years now. 
Recently we carried out molecular-dynamic studies of a two-dimensional Lennard- 
Jones system near its triple point [12] to investigate its static and dynamic properties. 
We have also studied the freezing of a two-dimensional fluid [I31 and established 
criteria as to when a monatomic fluid enters a metastable region. What happens 
to a two-dimensional fluid as it is compressed, is of interest as it will contribute 
to a better understanding of the three-dimensional glassy state and the liquid-glass 
transition. Even by itself, the question of the existence of a glassy state and of a 
liquid-glass transition in two dimensions is an important one to answer. For example, 
though the diffusion coefficient in two dimensions does not exist, one can study the 
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mean square displacement and the slope of its h e a r  portion at sufficiently long times 
to see if a long-living metastable glass state and a liquid-glass transition exists in two 
dimensions. As a first step in this direction, the present simulation was undertaken 
to study the dynamics of atomic motions in compressed liquids for times less than 
50 ps (using Argon parameters) and how they change from those of a normal liquid 
state wherein the time scales are less than 5 ps. In three dimensions, it is known 
that the dynamical behaviour of glass cannot be described by a single relaxation time 
but involve a broad distribution of relaxation times that extend over several decades. 
Further simulations, to much longer times, are needed to look at structural arrest, 
stretched exponential decay of the density correlation functions and other properties 
that characterize a glass transition region. The similarities and the differences between 
two-dimensional and threedimensional are always of interest to both experimentalists 
and theoreticians. 

Our results suggest that there is a transition, signalled by a deviation from h e a r  
dependence on density of an effective diffusion coefficient, a splitting of the second 
peak in the pair distribution function and a non-zero value of the non-Gaussian 
parameter at times of the order of tem of picoseconds. The time scale for decay to 
zero for correlation functions in a normal liquid is about 3 ps. During this transition, 
the system changes to an amorphous state. This transition, however, is not connected 
with the liquid-glass transition, as diffusion, for example, is still appreciable. 

Section 2 gives the details of the computer simulation methods and the results 
of the various static and dynamic correlation functions are presented in section 3. 
Conclusions are presented in section 4. 

2. Molecular-dynamics experiment 

The molecular-dynamic computer simulations were carried out for a system of N 
(128 and 242) particles of mass m interacting with the Lennard-Jones (U) potential 

The particles were confined to a square box of length L = U where 
n* = nu2 is the dimensionless density. The potential was cut off at half the box 
length, which does not create any problems, as it is at least 6a. Periodic boundary 
conditions were imposed in the usual fashion. Other dimensionIess units that are 
being used in this paper are: distance T' = T / U ,  wave vector q' = qu, time 
t') = t / r  where rz = ma2/48c and temperature T' = kgT/e .  Newton's equations 
of motion were integrated using the Verlet algorithm. The temperature was controlled 
by rescaling the particle velocities every 50 time steps and equilibrium was considered 
to be achieved if the temperature drift was within 0.005 of the required temperature, 
when scaling was turned off. Initially, equilibration was achieved after a run extending 
over about 104 time steps, After establishing an equilibrium configuration, an MD run 
was carried out for lo4 time steps, with At' = 0.032, corresponding to about s, 
using Argon U parameters. The position vector r( t )  and velocity vector v ( t )  for these 
time steps were stored to facilitate evaluation of the correlation functions. 

The temperature was kept constant at T' = 0.50, close to the triple-point 
temperature of 0.42, and the system was compressed from a density of n* = 0.81 
(triple-point density is 0.77) to densities of 0.85 and 0.90. At this temperature, it 
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is expected that thermal motions would not contribute significantly and thus the 
onset of crystallization can be avoided. Thus as the system is compressed, the atoms 
become more and more immobilized without the system sustaining the growth of a 
distinct crystal phase. The compression to the next-higher density was carried out by 
scaling all the particle positions by an appropriate factor that takes into a m u n t  the 
decreased box length. 

?b investigate the effect of system size, MD runs with 128 and 242 particles were 
performed at all densities. In our previous study 1121, pair distniution function and 
a few time correlation functions were calculated near the triple point with 128 and 
242 particles and the results were essentially the same. Here again, for the time 
scales we were looking at, the differences were quite minor, in most cases. The 
density correlation function F ( q ,  t) benefited from increased statistics. The results 
presented here are with 242 particles. 

3. Simulation results 

We wish to study the changes in the static and dynamic properties of the system as 
the density is compressed from a normal liquid density. Hence we have calculated 
the pair distribution function g(r). the velocity correlation function $(t) ,  the mean 
square displacement function (Arz(t)), the diffusion coefficient D', non-Gaussian 
parameter A(1), the self-correlation function F'(g, 1 )  and the density correlation 
function F(q,  t). 

Figure 1 shows the g(v)  results for the three densities. The graphs are displaced 
for clarity. It shows an evolution from a shoulder in the second peak, to a double 
peak at the position of the second-nearest neighbour in a liquid and to additional 
splitting of other peaks as the system is compressed from n' = 0.81 to 0.90. The 
first appearance of a shoulder in the second peak has been attributed to the onset of 
freezing 1131, while the splitting of the second peak is characteristic of dense random 
packing and an essential aspect of the amorphous structures of isotropic atoms in a 
threedimensional liquid. The splitting cannot be used to distinguish between glassy 
and metastable states. 
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Figure 1. ?he pair distribution function g(r) for 
n' = 0.81, 0.85 and 0.90 along the isotherm 
T' = 0.50. The graphs are displaced for clarily. 
The lower graphs correspond 10 lower densities. 

Figure 2. Velociry correlation function $ ( t )  for 
n' = 0.81 ( .  .. . .), 0.85 (- . -) and 0.90 (-). 
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The dense random packing model [14] has proved successful in describing 
amorphous states in threedimensional fluids and metals, in which characteristically, 
the pair distribution function has a fairly sharp first peak, a split second peak while 
the third and fourth peaks are blunt but more pronounced than those in liquids. Very 
good agreement for g(r) has been obtained between a hard-sphere system and a 
dense randomly packed hard-sphere system at the same density [15]. This structure 
in three dimensions has been analysed 1161 and found to have neighbours at a, J?a, 
2a etc where a is the nearest-neighbour distance. In as far as the first three distances 
are concerned, t h s  is true for hvo dimensions also. The main peak of g(r) at 
n* = 0.85 and 0.90 occurs at P* = 1.1, thus yielding the nearest-neighbour distance 
Q and the positions of the s lit second peak are at approximately 1.90 and 2.20, 
which correspond closely to J 3s and 2a. Thus we conclude that an amorphous state 
is indicated for n* = 0.85. 

Neutmn scattering studies of solid Argon films adsorbed in graphite indicate that 
the film forms a two-dimensional triangular lattice [lq. Thus the position of the 
second- and third-nearest-neighbour peaks in a crystal would be at r = &a and 
2a where a is the nearest-neighbour spacing. In our g(r) results, the absence of a 
peak near r' = d a  is taken to be evidence that nucleation has not set in, even at 
n* = 0.90. 

Comparing with corresponding g(r) graphs in three dimensions [SI, we note that 
our graph at n* = 0.85 is quite similar to the threedimensional graph at n* = 1.24. 
When one views these densities with respect to their respective FCC crystal densities, 
they are somewhat similar, since the FCC density in 3D is Jz while in ZD it is I, 
in dimensionless units. Thus the ratio is about the same and in this limited sense, 
one can say that similar amorphous-state characteristics occur at similar densities 2D 
and 3D. In this comparison, the slight differences in the two temperatures have been 
neglected. However, this argument cannot be taken too far. Since the normal liquid 
density is 0.78 in ZD and 0.84 in 3D, we see that the changes to g( r )  (and other 
correlation functions) occur over a much smaller range of density (0.78 to 0.85) in 
two dimensions. The corresponding range in 3D is 0.84 to 1.24. In other words, 
system properties are more sensitive to density changes in ZD than in 3D. 

It has been suggested [18], through computer simulation studies, that the 
supcrcoolcd-amorphous phase boundary in 3D U fluids occurs when the equivalent 
hard-sphere (diameter d )  packing fraction q (= 7rnd3/6) is 0.54. This corresponds 
to an n* of about 1.03, neglecting the small differences between d and CT and thus 
the effects of temperature. Our studies thus far on 2D U fluids suggest the onset of 
amorphous state at an n* of about 0.83. As a ratio of respective crystal densities, 
this is about 0.73 in 3D and 0.83 in zD. Further studies to define this boundary better 
are of interest 

Since the oscillations in g( r )  are still strong at half the box length, we calculated 
the static structure factor S(q) from the zero-time value of the density correlation 
function F ( q , t ) .  According to the freezing criteria 1131 established for g(r) and 
S(g), we conclude that freezing and with it the onset of metastable state are indicated 
for R" = 0.81. 

We need to look at time correlation functions in order to investigate the dynamics 
of atomic motions and we start with single-particle correlation functions. Figure 2 
shows the variation of the velocity correlation function (VCF) +(t) defined as 
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with increasing densily. uj(i)  is the velocity vector of particle j at time t. AU of 
the correlation functions described in this paper have been obtained using the low- 
memory requirement computer program outlined by Allen and Tildesley [19]. With 
each density increase, + ( t )  crosses zero at slightly earlier times, becoming more 
negative and exhibiting more oscillations. The negative correlations are due to the 
cage effect produced by neighbouring atoms. At the highest density, the oscillations 
cross zero again indicating rattling of the atoms in the cage. me oscillations also take 
longer to die away, but the behaviour is still far from that expected of a crystalline 
state. The changes to the VCF are quite systematic, as in g(r). 

Since + ( t )  is known to have a l / t  long time tail in two dimensions [20], the 
diffusion coefficient, as defined by the Green-Kubo integral does not exist. However 
the mean square displacement (ArZ(i)) defined as 

where rj(i) is the position vector of particle j at time t ,  shows a well defined linear 
behaviour for our simulation times, as shown in figure 3. Therefore an effective 
diffusion coefficient [21] can be obtained from the slope of the linear portion of 
the mean square displacement of figure 3. The value of this dimensionless diffusion 
coefficient D' = D r / d  decreases by an order of magnitude, going from 0.0018 
to 0.0004 to 0.0002 as n' goes from 0.81 to 0.85 to 0.90. For a two-dimensional 
liquid near the triple point, D' is about 0.006 [12], corresponding to a D of about 
2.2 x cmz s-l. Such a small diffusion coefficient at 0.85 indicates that the 
atoms are highly immobilized, at least for the time of the simulation. We have 
to study the very-long-time behaviour of D' to see if a glassy state or liquid-glass 
vansition has been reached. Though the diffusion constant shows a sharp drop in this 
density region, it does not become as small as that extrapolated from its behaviour 
at lower densities. We find that the density dependence of the diffusion coefficient 
for densities less than 0.8 is linear and a linear extrapolation gives a zero diffusion 
coefficient around n" = 0.82. Thus the density dependence changes from linear to 
a much slower decrease, but we do not have enough points to fit a mathematical 
formula. At this transition density, one can say that the system has gone over to an 
amorphous state, ammpanied by a change in the nature of the particle dynamics, 
from liquid-like to possibly one of trapping in and hopping between potential energy 
minima [22]. The corresponding transition density in 3D is 1.02 [5]. 

The non-Gaussian parameter A ( t ) ,  defined as 

yields additional information on compressed states. For normal fluids, this function 
starts from zero at t* = 0, attains a small maximum quite quickly and decays back 
to zero. However once the glassy state is reached, it does not decay to zero at long 
times but instead seems to level off. Such a behaviour is seen in three dimensions 
[B]. Figure 4 shows a plot of A(1) for various densities, all at 7" = 0.50. At a 



392 S Ranganalhan and G S Dubey 

Flgum 3. Plot of mean square displacement 
(A3(i))  as a function of t'. for no = 0.81 (top), 
085 (middle) and 0.90 (bottom). 

Flgurt 4. Plot of Ihe non-Gaussian parameter A( t )  
as a function of i* for densities n* = 0.81 (solid, 
Id1 scale), 0.85 (heavy solid, right scale) and 0.90 
(haw dotted, right scale), all at T' = 0.50. 

density of n* = 0.81, it starts from zero, reaches a maximum of 0.47 and then has 
a slow decay to zero. For a normal liquid near the two-dimensional triple point, the 
maximum of A ( t )  is much lower (about 0.15) and the decay to zero much faster than 
what is observed at n* = 0.81. Thus A ( t )  deviates from 0 over increasingly longer 
times as the system is compressed and at n* = 0.85, A(i) seems to level off around 
1.5 with little sign of decay. At a still higher density, the levelling off is yet to occur. 
It has been suggested [24] that the onset of a constant non-zero value, at long times, 
of the non-Gaussian parameter can be considered as an order parameter for the glass 
transition. 

Yet another single-particle correlation function of interest is the van Hove self- 
correlation function 

t )  = (exp[in. Ipj(t) - rj(0)ll). (5) 

For each q and t, the averages were taken over 1500 time origins and over 242 
particlcs. The results are shown in figure 5 for q* Y 6, close to the main peak in the 
structure factor, for the three densities. The graph is plotted to t' = 30 only, to show 
the short-time behaviour. However all of the data pertaining to density correlation 
functions have been obtained to 1' = 100 or about 30 ps. The initial decay does not 
seem to depend on density. At the lowest density, the behaviour of F,(q, 1 )  is similar 
to that of a liquid except that it takes somewhat longer for density fluctuations to 
die out But at higher densities, the decomposition into a fast-decaying and a very 
slow-decaying component is evident. The slow decay, whose relaxation time grows 
as the system is compressed, is due to a structural slowdown introduced by frcezing 
and has been observed in three-dimensional MD calculations [4,5]. Figure 6 shows 
the plot of Fs(q, t) for various values of q' at n* = 0.85. The dynamic slowdown is 
apparent and as q decreases, the relaxation time of the slowly decaying component 
increases. The implications of the long-time behaviour will be discussed later in this 
paper. 

A time correlation function that incorporates the collective aspects of the system 
is the density correlation function F(q, t )  defined as 

(6) 
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Figure 5. T i e  decay of the selfcorrelation Figure 6. Bmparal variation of the selfcorrelation 
function F.(q, 1 )  near the peak of the diffmction function F,(q, t )  at m* = 0.85, T' = 0.50 for 
maximum, q* % 6.3 for the three densities The q' = 3.7,6.0, 8 4  10.4. The lop cume cnmponds 
lower curyes correspond to lower densities. to Ihe lowest q.  

This correlation function contains direct information on how the local structure 
around an atom gradually smooths out with time. The evaluation of F(q,  f )  involved 
not only averaging over time origins and the number of particles, hut also an angular 
average. The angular average yields 

where J,, is the Bessel function of order 0. It is seen that highly damped oscillations 
exist at short times for q-values on either side of q,,. The hydrodynamic mode, wherein 
collective modes show up as an inelastic peak in S(q, w )  and as oscillations in F(q,  t). 
could not have set in for these q-values. A plausible explanation is the effect of non- 
ergodicity, shown by the very slow decay of the correlation function. Equation (7) 
was evaluated using the usual time-averaging techniques which is equivalent to an 
ensemble average only under the ergodic assumption. The smaller the number 
of particles, the larger is the non-equivalence. Similar non-physical oscillations in 
F ( q , t )  occur in other MD calculations [4,25]. Such non-physical oscillations are not 
seen in the F,( q, t) calculations, indicating that this quantity, being a single particle 
property, is obtained with much better accuracy than F(q,  t). Figure 7 is a plot of 
F(q,  1 )  normalized to unity at i = 0, for a few wave vectors, including the diffraction 
maximum, for n* = 0.85. Even though there are oscillations, we do clearly see that its 
relaxation can be described qualitatively as consisting of two parts, a fast initial decay, 
whose relaxation does not seem to change very much as a function of density, and a 
slow decay, signifying structural slowdown, whose relaxation time grows dramatically 
as density is increased. As a function of q, the initial decay shows a markedly slower 
rate near qu. The slow decay is strongly q-dependent, being most pronounced at qw 

The above graphs show how freezing affects the dynamics of atomic motions and 
it is worthwhile to compare the behaviour of F,(q, t )  and F ( q , t )  for a given density 
and several wave vectors. This is shown in figure 8 for n* = 0.90 and for a few 
q-values. It is seen that, near q' w 6.5 and 11.5, corresponding to the peaks of S(q), 
fluctuations involving collective modes decay initially at a slower rate compared to 
those involving single-particle motions. For other values of q, the opposite is true. 
If we subtract the slow-decay part (which will yield a very sharp peak in S(q, w )  
or S,(q,w)), such a behaviour is consistent with de Gennes narrowing, observed in 
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Figure I .  RmporaI decay of the density correlation 
function F ( g ,  t )  at n* = 0.85, T* = 0.50 for 
wave vectors, q* = 4.8 (-), 6.3 (- - -), 7.8 
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normal fluids. In order to better understand the decay of collective modes and single- 
particle modes, we have to look at the entire spectrum of wave vectors, especially 
their long-time behaviour. 

m $ 0.61  

Y 

Figure 8. Compatison of rhe lime varialion of the selfamlation function F,(g, t )  
(- . -) and the density correlation function F ( q , t )  (-) for R* = 0.90 and 
T' = 0.50 at p* = (a) 5.0, (b) 6.5, (c) 8.0 and (d) 11.5. 

Such a behaviour can be seen through the non-ergodicity parameter defined as 
the infinite-time limit of F,(q,  f )  and F(g, f ) / S ( q ) .  In dynamic theories, it is zero in 
liquids and finite in the glass state. In reality, both of these correlation functions will 
go to zero eventually, albeit at a very slow rate in glassy states. In figure 9, we have 
plotted these parameters f s ( q )  and f ( q )  at long times (1' = 100 or about 30 ps) as 
a function of the wave vector for n' = 0.85 and 0.90. This quantity characterizes the 
freezing of a liquid wherein an initial density fluctuation from a uniform equilibrium 
value does not relax back to equilibrium but remains in a non-uniform state forever. 
It is clear that f , (q )  falls off monotonically, while f ( q )  seem to exhibit a shape 
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Figure 9. Plot of f , ( q )  = F.(q , t  = lOOr) (cmms) and f(q) = F ( q , t  = lOOr) 
(circler) at T' = 0.5 for n' = (a) 0.90 and (b) 0.85. The data points in f(q) are 
joined to serve as a guide only. 

somewhat similar to S(q), with its maximum coinciding with the main peak of S(q). 
This is seen in three-dimensional simulations [4] and in modecoupling theories of the 
liquid-glass transition [26]. The resemblance, by itself, cannot be taken as evidence 
for the existence of a glassy state. 

f s ( q )  reflects single-particle motion at long times and its half width is inversely 
proportional to the root-mean-square displacement (RMSD) of a particle. A Gaussian 
fits our results very weU. An analysis of f J q )  will thus reveal characteristics of 
localization. In our case, the half width is about 6.7 for n' = 0.85 and about 9.0 for 
0.90. Very roughly, the RMSD values are of the order of 0.30 and 0.22 at these densities 
and thus their product is a constant, approximately 2.0. The long-time behaviour of 
G$(T, t ) ,  the single-particle probability distribution function and the Fourier transform 
of F,(q, t ) .  will yield significant insight into the onset of localization and its variation 
with density. The localization lengths have a bearing on the Lindemann criterion of 
melting. 

It is interesting to compare with 3D results The approximate theoretical analysis 
of Bengtzelius et af [26] gives a half width of about 12, an RMSD of 0.1 and thus 
a product of 1.2 at a liquid-glass transition density of n* = 0.98. Though Ullo 
and Yip [4] have not plotted f , (q) ,  their data indicate a half width of much less 
than 12 at a higher density. Since these 3D data seem to be at variance, a detailed 
comparison is not feasible at the moment Further study of f s ( q ) ,  RMSD, G,(r,t)  
are necessary in order to make definitive statements regarding localization and the 
Lindemann criterion. Such work is in progress. 

4. Conclusions 

We have studied in this paper, systematic variations of fluid properties in the 
metastable density region. We have seen a dynamical slowdown in the decay of 
the density correlation functions. The relaxation time becomes longer than the order 
of the observation time, indicating that the system cannot reach equilibrium within 
the time accessible in our MD runs. A similar slowdown is also observed in the decay 
of the non-Gaussian parameter. The glassy state, however, is characterized by the 
onset of a structural arrest in density correlation functions of both single-particle and 
collective modes. The onset of the non-zero long-time limit of the non-Gaussian 
parameter can also be equated with the glass transition. However, to identify the 
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glass and the liquid-glass transition in two dimensions will require simulations on 
much larger timescales than the ones presented here. 

However, 
significant changes to correlation functions occur in relatively small changes to density 
in two dimensions. Based on our analysis of g ( r )  and mean square displacement, 
we conclude that the onset of amorphous states occurs at about 0.83 of the q s t a l  
density. 

In order to understand fully these and other phenomena in ZD fluids, one has 
not only to investigate long times, but also consider twocomponent systems, where 
it is possible to reduce the crystallization rate considerably, and study temperature 
dependence of the non-ergodicity behaviour to see if a singularity does indeed exist. 
Only then can computer simulations verify the existence of a glassy state and a 
liquid-glass transition in two dimensions. 

S Ranganathan and G S Dubey 

In general, 2D results are similar and comparable to 3D results. 
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